计算机视觉-SLAM系列学习
作者:Frank
时间:2016-07-01
为了加深对Monocular SLAM的理解,开始学习并撰写一系列的博客,博客内容可能从最基本的相机标定开始,涉及单目相机的标定原理,各特征提取和匹配算子等系列内容。由于自己对SLAM相关的知识点理解的也不是非常透彻,所以博客序列也算是对自己知识的巩固和加强吧,文中若有错误,请不吝指出,谢谢!
转载请注明出处
作者:Frank
时间:2016-07-01
为了加深对Monocular SLAM的理解,开始学习并撰写一系列的博客,博客内容可能从最基本的相机标定开始,涉及单目相机的标定原理,各特征提取和匹配算子等系列内容。由于自己对SLAM相关的知识点理解的也不是非常透彻,所以博客序列也算是对自己知识的巩固和加强吧,文中若有错误,请不吝指出,谢谢!
$$T_{k,k-1}=arg [\mathop {\min }\limits_T ] \sum_{i}||u^{‘}_i- \pi(p_i)||_{\sum}^2 \tag{2} $$
$$\left\{ {\matrix{
{v_0}=(B_{12}B_{13}-B_{11}B_{23}) / (B_{11}B_{22}-B_{12}^2) \cr
}}\right. \tag{29} $$
令$$B={A^{-T}}{A^{-1}}=\left[{ \matrix{
B_{11}&B_{12}&B_{13} \cr
B_{21}&B_{22}&B_{23} \cr
B_{31}&B_{32}&B_{33} \cr
}}\right] =\left[ {\matrix{
1 \over {\alpha ^2} & - \gamma \over{ {\alpha ^2}\beta } & {v_0} \gamma - {u_0} \beta \over {\alpha ^2} \beta \cr
- \gamma \over {\alpha ^2}\beta & {\gamma ^2 \over {\alpha ^2}{\beta ^2}} + {1 \over \beta ^2 } & { - \gamma ({v_0}\gamma - {u_0}\beta ) \over {\alpha ^2}{\beta ^2}} - {v_0 \over \beta ^2} \cr
{v_0} \gamma - {u_0} \beta \over {\alpha ^2} \beta & { - \gamma ({v_0}\gamma - {u_0}\beta ) \over {\alpha ^2}{\beta ^2}} - {v_0 \over \beta ^2} & {({v_0}\gamma - {u_0}\beta )^2 \over {\alpha ^2}{\beta ^2}} + {v_0^2 \over \beta ^2} + 1 \cr
} } \right]$$
Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.